top of page
Search
brandacresswell285

Motorcycle Dynamics Vittore Cossalter Pdf Download: A Must-Have for Anyone Interested in the Science



It is worth noting that motorcycle riding simulators are not as widespread as aircraft and car driving simulators, and therefore the current selection is not very rich. Honda started to develop a series of motorcycle simulators in 1988; its first prototype consisted of a 5 DOF mock-up (lateral, yaw, roll, pitch and steer motions on a swinging system for the longitudinal acceleration restitution) and was based on a linear 4 DOF motorcycle dynamics model. In 1996, as a consequence of the change of the Japanese Road Traffic Act which required the use of simulators in riding schools lessons, Honda put a mass-produced model on the market. This second prototype had a simplified 3 DOF mock-up (roll, pitch and steer motions) and it was based on a properly tuned empirical motorcycle model. In 2002, Honda developed a third prototype which consisted of a 6 DOF plan manipulator for the mock-up motion, a head mounted display for visual projection, a 4 DOF model for the lateral motorcycle dynamics and a 1 DOF model for the longitudinal dynamics [1, 2]. The Department of Innovation in Mechanics and Management (DIMEG) of Padua University began the development of a riding simulator in 2000 and presented the first prototype in 2003 [3]. In 2003, PERCRO laboratory also presented its riding simulator with a real scooter mock-up mounted on a steward platform [4], and in 2007 INRETS presented a riding simulator based on a 5 DOF platform and a linear 5 DOF motorcycle mathematical model [5].


Since it is physically impossible to reproduce accelerations as they are in real life using the simulator, it is fundamental to use a washout filter and properly tune it. The washout tuning has been carried out by team members who are also expert riders and engineers involved in motorcycle dynamics. Tuning was performed with particular attention to:




Motorcycle Dynamics Vittore Cossalter Pdf Download



The riding sensations of the test riders have been collected by means of a questionnaire, which includes both technical questions and questions about perception and cognitive processes. The questionnaire was developed with the aid of two skilled riders who are also experts in motorcycle dynamics. The questionnaire (shown in Appendix 1) focuses on different aspects and situations including speed perception, the feeling accompanying braking and acceleration, the feelings of cornering and overtaking and obstacle avoidance. Moreover, for each situation is rated the fidelity of the simulator response to the rider input, the motion cues (in particular roll motion feeling and longitudinal acceleration feeling), and the audio/visual cues. The final validation was conducted on a wider user group of 20 subjects, aged between 20 and 60 years old, with different levels of riding experience but a minimum of 2,000 km per year. They had all held a valid riding license for at least 2 years, and were accompanied by a highly experienced rider (to avoid special biases induced by inexperience, problems with learning and becoming familiar with the equipment etc.). The test protocol is reported in Appendix 2.


Much of the material on Data for Motorcycles is derived from information found in the data acquisition and chassis dynamics books on this page. Unfortunately we know of no books dedicated solely to the topic of motorcycle data acquisition, but automotive-based books do offer plenty of advice that can be applied. The motorcycle-specific chassis dynamics books on this page do not address data acquisition specifically, but contain material that can be applied directly to data analysis. Note that Data for Motorcycles is part of the Amazon Associate program; if you click on an Amazon link and make a purchase, a small commission goes to the site. 2ff7e9595c


0 views0 comments

Recent Posts

See All

Comments


bottom of page